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Synge’s monograph p] and Rein’s paper [Z] contain a very general method for reducing 

the order of a system of Hamilton equations on the basis of a known integral. This 
method is an effective means of dealing with the nonrelativistic problem of the motion 

of two interacting charged particles in a homogeneous stationary magnetic field. In the 
present paper the four derived integrals of motion (in addition to the energy integral) 
are used to reduce this problem to one concerning the relative motion of one of the par- 

ticles. 

1, The Lagrange function of a system of two interacting charged particles in a homo- 
geneous magnetic field is of the form 

In the coordinates of the center of mass and of relative motion 

R= mlrl + m2r2 

m-l-m ’ 

r = r1- r2 (1.2) 
the Lagrange function can be written as 

I, = ‘/2MR’2 - 2AlcolY X’ + MO2 (ZY * - yx j f 

+ 1/2mr’2 + mm3 (my’ - yx’) - T 

Here 

(L3) 

l?t= 
mm722 M=m,+m2, (e1-t e2) B 

ml-km2 ’ “r = 2c (ml+ m2) 

w2 = 
(elm2 - egzl) II (elm2 + ezm12) B 

c (ml + m2j2 ’ w3 = ;- 
Lc (ml t mz) mm 

(l-4) 

The magnetic field has a Z-component only. Lagrangian (1.3) appears in a form 
asymmetrical with respect to the coordinates K and y. This renders the X- coordinate 
of the center of mass cyclical. By adding the total derivative with respect to time 

2 Mw, (YX’ + XY’), to Lagrangian (1,3), we can make Y cyclical instead of x. 
The fact that (1.3) contains a term with Wn indicates that the motion of the center 

of mass and the relative motion are gyroscopically linked, while the term ‘2)vUJ 1yx’ 
indicates that one of rPle coordinates of the center of mass is not cyclical . From (1. 3) 
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we see that in addition to the trivial case in which there is no magnetic field and a two- 

body problem results, the variables are also immediately separable in the two particular 

caseswhere WI -0 or Wan 0. For W 2 = 0 the problem breaks down into two inde- 

pendent problems : that of the motion of the center of mass and the problem of relative 

motion , Solution of the former is elementary, while the latter, by virtue of cylindrical 

symmetry, becomes a two-dimensional problem apparently solvable by approximate 

methods onljr. For W 1 0 all three coordinates of the center of mass are cyclical, so 

that the corresponding momenta are conserved, In this case the motion of the center 

of mass and the relative motion remain linked, however, since cU2#0 , 
In order to reduce the problem to a one-particle problem (i. e. to a sixth-order Hamil- 

ton system) in the general case, it is necessary to convert from Lagrange function to the 

Hamilton function 

H = & ((P, + 2MolY + Mo.Ly)” + (P, - M(O24” + K21 + 

and to make use of the motion integrals 

px = pox, PtJv = P, + 2fWWlX, P, = Paz (1.6) 

YPX -zp,+YP,-xP,+Mo~(Y2--x~) =L, (14 
The validity of (1.6) and (1.7) can be verified by writing out the corresponding 

Hamilton functions. The known integrals can be used to find a canonical transformation 

as a result of which the motion integral becomes a generalized momentum and the cor- 

responding generalized coordinate turns out to be cyclical. Following the method pre- 

sented in fl and 21, one can carry out the canonical transformations in either a Cartesian 

or a cylindrical coordinate system. 

2. In the Cartesian coordinate system of (1.5) the X- and ~-coordinates of the cen- 

ter of mass are cyclical . Hence, it is first necessary to eliminate p, and x from 

(1.7) using (1.6) to obtain the integral 
(2.1) . 

Fl (P,, px, py, Y, 5, y) = g- f 2i+fQ2 Y -t- 
( g&&- 1 

2+ 2o&/p,-zPJ = corm 

The generating function & , which depends on the previous coordinates y, X, y. z 

and on the new coordinates 7 , 41, q2, @ must satisfy Equation 

T+q$, y&, ~,Y,.,,)=O (2.2) 
Instead of solving Hamilton-Jacobi equation (2. 2) with Fl as the Hainilton function 

( 7 plays the role of time), we can find &_ by solving the corresponding system of Hamil- 

ton equations and computing the principal Hamilton function, By expressing it in terms 

of the previous coordinates and their initial values for ‘I- 0 , we can find the generating 

function W1 , One of the constants of integration over 7 should then be considered 

the parameter of the problem, and the remaining p 1 , 4 2 , 43 as the new coordinates 

(along with 7) . The generating function then assumes the form 

WI = (sq, - Y44 sin 2~ + (xql+ yq2) cos 20~ + 2q3 + 
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where q. is a constant The relationship between the new variables and the initial 

ones is given by the relations (“A) 

P, = z$;;;t (( Y + y;!& ) cos %)tr - (/fi) 1’: = q;r, pa T-m -_5 

Pr = q1 cos 26,lZ -I- “I:! sin ZWiT, p,, : -- ql silt Zco,z -f q2 co,c 2(4,,r 

The following condition is fulfilled in addition to (2.2) : the deternlinant consisting 

of the mixed second partial derivatives of Wl with respect to the new and initial coor- 

dinates is not equal to zero. 

Exchanging the roles of the new momenta and coordinates, we can write Hamiltonian 

(1. 5) in the form 

The generalized momentum p, is here conserved and the problem has thus been 

reduced to a one&particle problem . From (2. 4) it follows that 41 , cJa in (2. 5) have 

the same meaning as x2 p, since they are related by a rotation transformation relative 

to the Z-axis , 

Here the dependence of 7 on time is given by 

z’ = N/S, 

where H is given by (2.5) . 

For the above particular cases W 1 = 0 and W 2 = 0 Hamiltonian (2. 5) becomes sim- 

ple : it lacks the square root of the expression containing 4 $2-q $1 . For W 1 = 0 

from (2.6) we have .%_?=ql , 1/ = 42 and (2. 5) coincides with (1. 5) if we set 

P, = 2Mwlq,, T P, = @MP, 

in Hamiltonian (1. 5) . 
If Wa = 0 (here W1 = W,) , then (2. 5) differs from that part of Hamiltonian (1. 5) 

which with W 2 = 0 describes the relative motion only in the sign of W a . This is due 

to conversion to coordinate system (2.6) rotating with the constant angular velocity 2 WI 

in the direction opposite to that of cyclotronic rotation ( T= d for ilila = 0) . 
In the absence of a magnetic field (i. e. when O1 = W2 = W3 ) , Expression (2. 5) 

becomes the ordinary Hamiltonian of the Kepler problem . 

3. In the cylindrical coordinate system 

X = R cosv, Y ~-2 X sin +, z =- p cos cp, g : p sin cp (3.1) 
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it is important to rep1ac.C the angles $, c,C by the new angles 

(1 ‘1 --q, I’, If I/ (3.2> 
and to make use of a Lagrangian differing from (1.3) by the total derivative with respect 
to time JJIOL (XY’ -+ YX’) 

This Lagrangian, being symmetrical in x, Y and X, y, has the two cyclical caor- 

dinates p and 2 in variables (3.2) . The corresponding tlamilcon function is of the form 

It can be shown that ?p = L, (see (1.7)) . After @ has been eliminated integrals 

(I* 6, YieliTz (Pp, p,, K) G $M {PC + (q -MO&js)~ Y const (Vl) 

As above, we can find the generating function 

IV, = ---FL ((W + R()‘) CQS C.Olr - 2RRJ cos (a -- QF -t_ til%)) + 2sxn Wl< 

+ h (a - $4 -t- pqe + -%I 
(3.5) 

Here 77 4 4 t 45 t 46 8~ R&W coordinates and B. is a constant . The function 

W2 satisfies Equation 
q+F+$, T,R)=tl (3X) 

The relationship berween the old and new variables is given by the relations 

P, = Mw,(R cos WIT - R, cos (a - qfj + wg)) (sin ciyc)--~ 

pa = L, - 2MqRJ?sin(cz - pa + wlz) (sin o1 T)-~ 

pr = l/z M@,2 (fi2 + &ja - ZRR, cos (a - q$J) (sin#lz)-2 (3.7) 
PO = (143 Pz = qst P4 = - p7 P5 = - z, Ps = pee 

Extrhanging the roles of p4 , 44 and p5 , 45 in this case, we can write Hamilton 
function (3.3) in the new variables, using the previous notation for the angle ( Ix. instead 

(3.8) 

Here @ is the integral of motion, 

In order to compare (2,5) and (3.8) it is necessary to convert to the cylindrical coor- 

dinate system in (2. 5) and to apply the canonical transformation with the generating 

Here the polar angle cp 9s related to the new angle a by Expression 

while the remaining variables (except ‘f) are rrot transformid, so that instead of (2. 5) 
we have (omitting the primes) 
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Returning to (3. 8). let us transform this Hamiltonian by means of the generating func- 

Cd=Uf Pa - r, + MaRo2 
COO-l 

Ro r/ZMY, + 4Mw (P, - Lo) 

and the remaining variables (except 7) are not transformed. 

As a result of this transformation. (3.8) yields Hamiltonian function f3,11> which was 

previously derived from (2. 5). We have thus succeeded in reducing the twelfth-order 
system of Hamilton equations to a sixth-order system, i. e, to the problem of relative 

motion. For UJ, # 0 this motion is related to the motion of the center of mass by way 
of P, in ($11) or P,, q. in (2.5) and P,, Lo, R, in (3. 8). 

4, , The effect of the center-of-mass motion on the relative motion has as one of its 
results the fact that the systems of canonical equations corresponding to Hamiltonians 

(2,5), (3. Q, or (3.11) have a time-independent solution if W 2 # 0 . 
Making use of (3. ll), we can write the equations of motion in the form 

(4.4) 

This system has the trivial solution Q‘ = pa‘ = a’ = z’ = 5 == 0 and CX, = 0 or 
CL = TT. The values of C$ and p are determined by equations (4.2) and (4.3) with 
zero as their left sides . This solution can be illustrated by means of a cancrete exam- 

ple . In fact, (1.6), (2.41, (2.6), (3.7 0) and (4.4) imply that the particles in this case 
are always situated at fixed points on a saaight line which rotates about one of its points 
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with the coordinates PO,/2 MU,, - P,J 2 Mq with the constant angular velocity 

-2q r’J 2Mto,w,p (2 MP, _t 4 !~hIpa)-“~ 
and with the initial phase 

lin-’ 

2Motqa 

JhMP, + 4Molpo 

Here pa, p are trivial solutions of (4,2) and (4.3). We note that for el, e2 > 0 
the solution is “longitudinally” unstable, which follows from the equation for 2 (4.1). 

Let us analyze the case where or = 0 (er = --es = -e < C) in more detail. Here 

P’a = mw,pa and the equilibrium value of p is given by Equation 

--a/p- MWp - 02 1/2MP, = 0 (4.5) 

In order to consider the existence and stability of the time-independent solution it is 
convenient to convert to the Lagrange function 

E =T ($2 + y-2 + 2'2)f mw3 (xy' -t/z') + 

- -&- (w~2+-Q+ (J$TY +eg} (4.6) 

and to investigate the behavior of equipotential surfaces of the form 

[(x - z# + y’] - (4.7) 

making use of the energy integral. In contrast to (4.6) , in (4,7) we chose a coordinate 
system in which Pox = 0, z0 = Pou/Mo2 > 0. Here X0 has a simple physical meaning 

in the scattering problem : it is the distance in the Xy plane between the centers of 

the Larmor circles for t = -00 (i, e. a kind of impact parameter), The latter is easily 
proved by substituting into integral (1.6) written in the form ( WI = 0) 

mtyl’ +- m2y2’ 4- Mc2 (XI - 4 = Pal, 

the solution for noninteracting particles in a magnetic field which is valid for the scat- 

tering problem for 8 = - CQ. 
To begin with, we can show that Equation 

L’(x, 0, O)~~(x-xo)“-&E 

has one negative and three positive solutions if 

4 Mu$x$ 
-,,>I, 27 Ul<E<UZ 

(4.8) 

(4.9) 
where 

(4.12) 

From (4.7) it is evident that 

au I& > 6, au/az>o, u (2, y, 3 -> > 0 

Hence , for VI <E:c Un the equipotential surface breaks up into two surfaces, one 
of which is closed and contains the origin of the coordinate system, while the other 
contains the minimum point of u( X, E/ , 2 ) with the coordinates X= xpl, I/ = .#= 0 , 
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x,n = ‘i’:,.ro II I 2 cos I/s (a - O)] (4.13) 

and is closed if ul <E < 0 and open for z ka, if uz > ?’ > 0 , which is possible 

provided that 

which follows from (4. lo), (4. 12). The case where gn> 0 means that three-dimen- 

sional finite motion about the origin is possible. although the total energy is larger than 

the minimum of I/( X. 9, Z) for Z *O’. For ul < &’ < 0 , in addition to the ordi- 
nary (Keplerian) finite motion about the origin it is also possible to have finite motion 

about the point X = Xm (4.13) , y : 2 ;. 0 . In considering trajectories it should be 
borne in mind that inclusion of the term 

in Lagrangian (4.6) naturally imposes an additional limitation on transverse motion 
across the magnetic field . 

Turning back to Equation (4.5). we can readily show that it determines the coordinates 

of,the maximum and minimum of u( X , 0 , 0) in accordance with (4. 8). It has two 
positive roots if condition (4. 9), where 

is fulfilled. 
Here XDI (4. 13) is a large root associated with a stable trivial solution. Expressions 

(4.9) and (4.13) likewise imply that 

x, > (2 Mc21B+ (4.14) 

It should be noted that the uniform rotation of the particles which corresponded to the 
time-independent solution of system (4.1) to (4,4) degenerates with UJ1 = 0 into 

straight-line motion with constant velocity, This can be illustrated as follows. Let 
particles with charges of opposite sign e, = - e, = - e move across a homogeneous 

magnetic field at the same velocity v in the direction perpendicular to the radius vec- 
tor connecting these particles and lying entirely in the Xy plane . 

For any given field and velocity there always exists a radius vector of a length such 
that the Lorentz force for both particles is balanced by the Coulomb force 

eBV/c = e2/pz (4.15) 

where 12 is given by Equation (4.5) . 
Making use of (4.14) and (4.15) , we can write the stability condition in the form 

V<e (&)“’ 
From (4.14) and (4,16) it follows that as B tends to zero, the distance X, between 

a stable pair of particles tends to infinity and their velocity to zero,. Only in suffici- 

ently strong (lo* - lo5 G) magnetic fields can the velocity of a stable pair (a positive 

and negative ion, an electron and an ion or an electron and a hole) become comparable 

with the mean thermal velocity and the pair size with the free path. 
As we see from (4,6), for pox = poY = 0 the problem reduces to a plane one by vir- 

tue of cylindrical symmetry. For pox , pay i 0 the problem can be reduced to quad- 
ratnres in the particular plane case W1 = Wg = 0 , Z' = Z = 0 ; this solution is obvi- 

ously stable in Z. What we have in this case is a Liouville system [S], and in elliptical 



Motion of charged particles in a magnetic field 71 

coordinates with the origin at the point (X 2 X0 , g = 0) the equation of the trajectory 

Here y 6 are integration constants . In fact, it is possible here that the motion is 

along ellipses with foci at the origin and at the point X = 2 X0 , Y = 0 . This follows 
from the theorem of Bonnet [3]. It can also be shown that in the three-dimensional case 

for &’ > u, the equipotential surfaces form open traps near the origin, It is interesting 

in this case to estimate the duration of capture in such a trap of a particle approaching 

from infinity with E > 0 , In terms of the two-body problem, capture constitutes the 
formation of a bound pair of particles lying at infinity z = hco at t = f 03. This 
problem requires special study and will not be considered here. 

We have thus derived integrals of motion and used them to carry out canonical trans- 

formations whereby the classical nonrelativistic problem of motion of two interacting 
charged particles in a homogeneous stationary magnetic field is reduced to a one-parri- 
cle relative motion problem’ for arbitrary charges and masses of both particles. We have 

shown that with the exception of the case where the specific charges are equal, the 
motion of the center of mass affects the relative motion. In the particular case where 

the particles have charges of opposite sign but the same absolute value there arise stable 
equilibrium states not of the ordinary Keplerian type. 
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